Primary Literature Publications

 

105. K.C. Costa, L.S. Moskatel, L.A. Meirelles and D.K. Newman. (2018) PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in Mycobacterium fortuitum, J. Bacteriol. 200:e00763-17 PMCID: PMC5915785 http://resolver.caltech.edu/CaltechAUTHORS:20180306-084603442.


104. D.W. Basta, M. Bergkessel, D.K. Newman and M. Whiteley. (2017) Identification of fitness determinants during energy-limited growth arrest in Pseudomonas aeruginosa, MBio 8:e01170 PMCID: PMC5705914 http://resolver.caltech.edu/CaltechAUTHORS:20171205-204626357.


103. B.M. Babin, L. Atangcho, M.B. van Eldijk, M.J. Sweredoski, A. Moradian, S. Hess, T. Tolker-Nielsen, D.K. Newman and D.A. Tirrell. (2017) Selective proteomic analysis of antibiotic-tolerant cellular subpopulations in Pseudomonas aeruginosa biofilms, MBio 8:e01593-17 PMCID: PMC5654934 http://resolver.caltech.edu/CaltechAUTHORS:20171030-071731344.


102. N.R. Glasser, B.X. Wang, J.A. Hoy and D.K. Newman. (2017) The pyruvate and α-ketoglutarate dehydrogenase complexes of Pseudomonas aeruginosa catalyze pyocyanin and phenazine-1-carboxylic acid reduction via the subunit dihydrolipoamide dehydrogenase, J. Biol. Chem. 292:5593–5607 PMCID: PMC5392700 http://resolver.caltech.edu/CaltechAUTHORS:20170213-091715272.


101. L.R. Racki, E.I. Tocheva, M.G. Dieterle, M.C. Sullivan, G.J. Jensen and D.K. Newman. (2017) Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U.S.A. 114:E2440–E2449 PMCID: PMC5373386 http://resolver.caltech.edu/CaltechAUTHORS:20170306-140446676.


100. K.C. Costa, N.R. Glasser, S.J. Conway and D.K. Newman. (2017) Pyocyanin degradation by a tautomerizing demethylase inhibits Pseudomonas aeruginosa biofilms, Science 355:170–173 PMCID: PMC5303695 http://resolver.caltech.edu/CaltechAUTHORS:20161208-131717229.


99. J.N. Ricci, R. Morton, G. Kulkarni, M.L. Summers and D.K. Newman. (2017) Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme, Geobiology 15:173–183 PMID: 27527874 http://resolver.caltech.edu/CaltechAUTHORS:20160822-074307063.


98. H.M.T. Choi, C.R. Calvert, N. Husain, D. Huss, J.C. Barsi, B.E. Deverman, R.C. Hunter, M. Kato, S.M. Lee, A.C.T. Abelin, et al. (2016) Mapping a multiplexed zoo of mRNA expression, Development 143:3632–3637 PMCID: PMC5087610 http://resolver.caltech.edu/CaltechAUTHORS:20161011-070233463.


97. W.H. DePas, R. Starwalt-Lee, L. Van Sambeek, S. Ravindra Kumar, V. Gradinaru and D.K. Newman. (2016) Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling, MBio 7 PMCID: PMC5040109 http://resolver.caltech.edu/CaltechAUTHORS:20160927-144217261.


96. N.J. Shikuma, I. Antoshechkin, J.M. Medeiros, M. Pilhofer and D.K. Newman. (2016) Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling, Proc. Natl. Acad. Sci. U.S.A. 113:10097–10102 PMCID: PMC5018781 http://resolver.caltech.edu/CaltechAUTHORS:20160823-074209373.


95. B.M. Babin, M. Bergkessel, M.J. Sweredoski, A. Moradian, S. Hess, D.K. Newman and D.A. Tirrell. (2016) SutA is a bacterial transcription factor expressed during slow growth in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U.S.A. 113:E597-605 PMCID: PMC4747698 http://resolver.caltech.edu/CaltechAUTHORS:20160120-081453238.


94. S.H. Kopf, A.L. Sessions, E.S. Cowley, C. Reyes, L. Van Sambeek, Y. Hu, V.J. Orphan, R. Kato and D.K. Newman. (2016) Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum, Proc. Natl. Acad. Sci. U.S.A. 113:E110-116 PMCID: PMC4720290 http://resolver.caltech.edu/CaltechAUTHORS:20160104-065151473.


93. R.M. Mariita, S. Bhatnagar, K. Hanselmann, M.J. Hossain, J. Korlach, M. Boitano, R.J. Roberts, M.R. Liles, A.G. Moss, J.R. Leadbetter, et al. (2015) Complete genome sequence of Streptomyces sp. strain CCM_MD2014, isolated from topsoil in Woods Hole, Massachusetts, Genome Announc. 3:e01506-15 PMCID: PMC4698389 http://resolver.caltech.edu/CaltechAUTHORS:20160111-095010392.


92. R.M. Mariita, S. Bhatnagar, K. Hanselmann, M.J. Hossain, J. Korlach, M. Boitano, R.J. Roberts, M.R. Liles, A.G. Moss, J.R. Leadbetter, et al. (2015) Complete genome sequence of Curtobacterium sp. strain MR_MD2014, isolated from topsoil in Woods Hole, Massachusetts, Genome Announc. 3:e01504-15 PMCID: PMC4698388 http://resolver.caltech.edu/CaltechAUTHORS:20160111-090546456.


91. N.N. Kreamer, R. Phillips, D.K. Newman and J.Q. Boedicker. (2015) Predicting the impact of promoter variability on regulatory outputs, Sci. Rep. 5:18238 PMCID: PMC4682146 http://resolver.caltech.edu/CaltechAUTHORS:20160106-065143620.


90. K.C. Costa, M. Bergkessel, S. Saunders, J. Korlach and D.K. Newman. (2015) Enzymatic degradation of phenazines can generate energy and protect sensitive organisms from toxicity, MBio 6:e01520-01515 PMCID: PMC4626857 http://resolver.caltech.edu/CaltechAUTHORS:20151102-105401926.


89. G. Kulkarni, N. Busset, A. Molinaro, D. Gargani, C. Chaintreuil, A. Silipo, E. Giraud and D.K. Newman. (2015) Specific hopanoid classes differentially affect free-living and symbiotic states of Bradyrhizobium diazoefficiens, MBio 6:e01251-01215 PMCID: PMC4620461 http://resolver.caltech.edu/CaltechAUTHORS:20151008-142740942.


88. C. Neubauer, N.F. Dalleska, E.S. Cowley, N.J. Shikuma, C.-H. Wu, A.L. Sessions and D.K. Newman. (2015) Lipid remodeling in Rhodopseudomonas palustris TIE-1 upon loss of hopanoids and hopanoid methylation, Geobiology 13:443–453 PMID: 25923996 http://resolver.caltech.edu/CaltechAUTHORS:20150504-103056372.


87. E.S. Cowley, S.H. Kopf, A. LaRiviere, W. Ziebis and D.K. Newman. (2015) Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation, MBio 6:e00767 PMCID: PMC4551978 http://resolver.caltech.edu/CaltechAUTHORS:20151002-111813971.


86. C.-H. Wu, L. Kong, M. Bialecka-Fornal, S. Park, A.L. Thompson, G. Kulkarni, S.J. Conway and D.K. Newman. (2015) Quantitative hopanoid analysis enables robust pattern detection and comparison between laboratories, Geobiology 13:391–407 PMCID: PMC4676935 http://resolver.caltech.edu/CaltechAUTHORS:20150421-104932645.


85. S.H. Kopf, S.E. McGlynn, A. Green-Saxena, Y. Guan, D.K. Newman and V.J. Orphan. (2015) Heavy water and 15N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats, Environ. Microbiol. 17:2542–2556 PMCID: PMC4587896 http://resolver.caltech.edu/CaltechAUTHORS:20150220-131055817.


84. J.N. Ricci, A.J. Michel and D.K. Newman. (2015) Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria, Geobiology 13:267–277 PMID: 25630231 http://resolver.caltech.edu/CaltechAUTHORS:20150202-095339879.


83. L. Van Sambeek, E.S. Cowley, D.K. Newman and R. Kato. (2015) Sputum glucose and glycemic control in cystic fibrosis-related diabetes: a cross-sectional study, PLoS ONE 10:e0119938 PMCID: PMC4372582 http://resolver.caltech.edu/CaltechAUTHORS:20150604-131000659.


82. N.N. Kreamer, F. Costa and D.K. Newman. (2015) The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance, MBio 6:e02549 PMCID: PMC4358008 http://resolver.caltech.edu/CaltechAUTHORS:20150619-085839244.


81. C.-H. Wu, M. Bialecka-Fornal and D.K. Newman. (2015) Methylation at the C-2 position of hopanoids increases rigidity in native bacterial membranes, Elife 4 PMCID: PMC4337730 http://resolver.caltech.edu/CaltechAUTHORS:20150303-083043246.


80. A. Silipo, G. Vitiello, D. Gully, L. Sturiale, C. Chaintreuil, J. Fardoux, D. Gargani, H.-I. Lee, G. Kulkarni, N. Busset, et al. (2014) Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes, Nat. Commun. 5:5106 PMID: 25355435 http://resolver.caltech.edu/CaltechAUTHORS:20141208-104816963.


79. E.P. Fox, E.S. Cowley, C.J. Nobile, N. Hartooni, D.K. Newman and A.D. Johnson. (2014) Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures, Curr. Biol. 24:2411–2416 PMCID: PMC4252622 http://resolver.caltech.edu/CaltechAUTHORS:20141020-141511951.


78. R.J. Malott, C.-H. Wu, T.D. Lee, T.J. Hird, N.F. Dalleska, J.E.A. Zlosnik, D.K. Newman and D.P. Speert. (2014) Fosmidomycin decreases membrane hopanoids and potentiates the effects of colistin on Burkholderia multivorans clinical isolates, Antimicrob. Agents Chemother. 58:5211–5219 PMCID: PMC4135860 http://resolver.caltech.edu/CaltechAUTHORS:20141007-095444557.


77. N.R. Glasser, S.E. Kern and D.K. Newman. (2014) Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force, Mol. Microbiol. 92:399–412 PMCID: PMC4046897 http://resolver.caltech.edu/CaltechAUTHORS:20140401-104038513.


76. J.N. Ricci, M.L. Coleman, P.V. Welander, A.L. Sessions, R.E. Summons, J.R. Spear and D.K. Newman. (2014) Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche, ISME J. 8:675–684 PMCID: PMC3930323 http://resolver.caltech.edu/CaltechAUTHORS:20140407-105009295.


75. L.J. Bird, I.H. Saralva, S. Park, E.O. Calçada, C.A. Salgueiro, W. Nitschke, R.O. Louro and D.K. Newman. (2014) Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1, J. Bacteriol. 196:850–858 http://resolver.caltech.edu/CaltechAUTHORS:20140407-131828981.


74. N.J. Shikuma, M. Pilhofer, G.L. Weiss, M.G. Hadfield, G.J. Jensen and D.K. Newman. (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures, Science 343:529–533 PMCID: PMC4949041 http://resolver.caltech.edu/CaltechAUTHORS:20140113-134430398.


73. D.M. Doughty, M. Dieterle, A.L. Sessions, W.W. Fischer and D.K. Newman. (2014) Probing the subcellular localization of hopanoid lipids in bacteria using NanoSIMS, PLoS ONE 9:e84455 PMCID: PMC3883690 http://resolver.caltech.edu/CaltechAUTHORS:20140206-114311185.


72. I. Olovnikov, K. Chan, R. Sachidanandam, D.K. Newman and A.A. Aravin. (2013) Bacterial argonaute samples the transcriptome to identify foreign DNA, Mol. Cell 51:594–605 PMCID: PMC3809076 http://resolver.caltech.edu/CaltechAUTHORS:20140220-100231898.


71. R.C. Hunter, F. Asfour, J. Dingemans, B.L. Osuna, T. Samad, A. Malfroot, P. Cornelis and D.K. Newman. (2013) Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways, MBio 4:e00557-13 PMCID: PMC3753050 http://resolver.caltech.edu/CaltechAUTHORS:20170524-074650388.


70. G. Kulkarni, C.-H. Wu and D.K. Newman. (2013) The general stress response factor EcfG regulates expression of the C-2 hopanoid methylase HpnP in Rhodopseudomonas palustris TIE-1, J. Bacteriol. 195:2490–2498 PMCID: PMC3676068 http://resolver.caltech.edu/CaltechAUTHORS:20130627-100549056.


69. L.J. Bird, M.L. Coleman and D.K. Newman. (2013) Iron and copper act synergistically to delay anaerobic growth of bacteria, Appl. Environ. Microbiol. 79:3619–3627 PMCID: PMC3675935 http://resolver.caltech.edu/CaltechAUTHORS:20130709-082907927.


68. L.E.P. Dietrich, C. Okegbe, A. Price-Whelan, H. Sakhtah, R.C. Hunter and D.K. Newman. (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state, J. Bacteriol. 195:1371–1380 PMCID: PMC3624522 http://resolver.caltech.edu/CaltechAUTHORS:20130506-103435647.


67. S.H. Kopf, C. Henny and D.K. Newman. (2013) Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments, Environ. Sci. Technol. 47:2602–2611 PMCID: PMC3604861 http://resolver.caltech.edu/CaltechAUTHORS:20130429-093249361.


66. A.L. Sessions, L. Zhang, P.V. Welander, D. Doughty, R.E. Summons and D.K. Newman. (2013) Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography-mass spectrometry, Org. Geochem. 56:120–130 PMCID: PMC3780965 http://resolver.caltech.edu/CaltechAUTHORS:20130503-154036933.


65. R.C. Hunter, V. Klepac-Ceraj, M.M. Lorenzi, H. Grotzinger, T.R. Martin and D.K. Newman. (2012) Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity, Am. J. Respir. Cell Mol. Biol. 47:738–745 PMID: 22865623 http://resolver.caltech.edu/CaltechAUTHORS:20121210-081645386.


64. L. Pereira, I.H. Saraiva, R. Coelho, D.K. Newman, R.O. Louro and C. Frazão. (2012) Crystallization and preliminary crystallographic studies of FoxE from Rhodobacter ferrooxidans SW2, an FeII oxidoreductase involved in photoferrotrophy, Acta Crystallogr., Sect. F: Struct. Biol. Commun. 68:1106–1108 http://resolver.caltech.edu/CaltechAUTHORS:20121018-154043571.


63. I.H. Saraiva, D.K. Newman and R.O. Louro. (2012) Functional characterization of the FoxE iron oxidoreductase from the photoferrotroph Rhodobacter ferrooxidans SW2, J. Biol. Chem. 287:25541–25548 PMCID: PMC3408196 http://resolver.caltech.edu/CaltechAUTHORS:20120827-113105549.


62. S.H. Kopf and D.K. Newman. (2012) Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron, Geobiology 10:216–222 PMCID: PMC4587904 http://resolver.caltech.edu/CaltechAUTHORS:20120507-075239308.


61. P.V. Welander, D.M. Doughty, C.-H. Wu, S. Mehay, R.E. Summons and D.K. Newman. (2012) Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants, Geobiology 10:163–177 PMCID: PMC3553210 http://resolver.caltech.edu/CaltechAUTHORS:20120302-134849665.


60. N.N.K. Kreamer, J.C. Wilks, J.J. Marlow, M.L. Coleman and D.K. Newman. (2012) BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa, J. Bacteriol. 194:1195–1204 PMCID: PMC3294787 http://resolver.caltech.edu/CaltechAUTHORS:20120323-082322420.


59. D.M. Doughty, M.L. Coleman, R.C. Hunter, A.L. Sessions, R.E. Summons and D.K. Newman. (2011) The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1, Proc. Natl. Acad. Sci. U.S.A. 108:E1045-1051 PMCID: PMC3215060 http://resolver.caltech.edu/CaltechAUTHORS:20111128-101611198.


58. N.L. Sullivan, D.S. Tzeranis, Y. Wang, P.T.C. So and D. Newman. (2011) Quantifying the dynamics of bacterial secondary metabolites by spectral multiphoton microscopy, ACS Chem. Biol. 6:893–899 PMCID: PMC3212935 http://resolver.caltech.edu/CaltechAUTHORS:20111005-113650941.


57. J.R. Waldbauer, D.K. Newman and R.E. Summons. (2011) Microaerobic steroid biosynthesis and the molecular fossil record of Archean life, Proc. Natl. Acad. Sci. U.S.A. 108:13409–13414 PMCID: PMC3158215 http://resolver.caltech.edu/CaltechAUTHORS:20130403-162415003.


56. K.C. Reddy, R.C. Hunter, N. Bhatla, D.K. Newman and D.H. Kim. (2011) Caenorhabditis elegans NPR-1-mediated behaviors are suppressed in the presence of mucoid bacteria, Proc. Natl. Acad. Sci. U.S.A. 108:12887–12892 PMCID: PMC3150904 http://resolver.caltech.edu/CaltechAUTHORS:20110822-094630738.


55. Y. Wang, J.C. Wilks, T. Danhorn, I. Ramos, L. Croal and D.K. Newman. (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition, J. Bacteriol. 193:3606–3617 PMCID: PMC3133341 http://resolver.caltech.edu/CaltechAUTHORS:20130403-141504385.


54. L.J. Bird, V. Bonnefoy and D.K. Newman. (2011) Bioenergetic challenges of microbial iron metabolisms, Trends Microbiol. 19:330–340 PMID: 21664821 http://resolver.caltech.edu/CaltechAUTHORS:20110805-100811696.


53. A. Bose and D.K. Newman. (2011) Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK, Mol. Microbiol. 79:63–75 http://resolver.caltech.edu/CaltechAUTHORS:20110308-123056256.


52. R.C. Hunter and D.K. Newman. (2010) A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa, J. Bacteriol. 192:5962–5971 PMCID: PMC2976449 http://resolver.caltech.edu/CaltechAUTHORS:20101103-111826151.


51. P.V. Welander, M.L. Coleman, A.L. Sessions, R.E. Summons and D.K. Newman. (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes, Proc. Natl. Acad. Sci. U.S.A. 107:8537–8542 PMCID: PMC2889317 http://resolver.caltech.edu/CaltechAUTHORS:20100601-111422016.


50. A. Kappler, C.M. Johnson, H.A. Crosby, B.L. Beard and D.K. Newman. (2010) Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria, Geochim. Cosmochim. Acta 74:2826–2842 http://resolver.caltech.edu/CaltechAUTHORS:20100528-114059025.


49. I. Ramos, L.E.P. Dietrich, A. Price-Whelan and D.K. Newman. (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales, Res. Microbiol. 161:187–191 PMCID: PMC2886020 http://resolver.caltech.edu/CaltechAUTHORS:20130312-080720662.


48. Y. Wang, S.E. Kern and D.K. Newman. (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer, J. Bacteriol. 192:365–369 PMCID: PMC2798253 http://resolver.caltech.edu/CaltechAUTHORS:20130405-104044575.


47. D.M. Doughty, R.C. Hunter, R.E. Summons and D.K. Newman. (2009) 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications, Geobiology 7:524–532 http://resolver.caltech.edu/CaltechAUTHORS:20130417-105815720.


46. A.J. Poulain and D.K. Newman. (2009) Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism, Appl. Environ. Microbiol. 75:6639–6646 PMCID: PMC2772431 http://resolver.caltech.edu/CaltechAUTHORS:20130430-132656400.


45. P.V. Welander, R.C. Hunter, L. Zhang, A.L. Sessions, R.E. Summons and D.K. Newman. (2009) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1, J. Bacteriol. 191:6145–6156 PMCID: PMC2747905 http://resolver.caltech.edu/CaltechAUTHORS:20091002-105243373.


44. A.K. Boal, J.C. Genereux, P.A. Sontz, J.A. Gralnick, D.K. Newman and J.K. Barton. (2009) Redox signaling between DNA repair proteins for efficient lesion detection, Proc. Natl. Acad. Sci. U.S.A. 106:15237–15242 PMCID: PMC2741234 http://resolver.caltech.edu/CaltechAUTHORS:20090923-143133443.


43. L.R. Croal, Y. Jiao, A. Kappler and D.K. Newman. (2009) Phototrophic Fe(II) oxidation in an atmosphere of H2: implications for Archean banded iron formations, Geobiology 7:21–24 PMCID: PMC2763526 http://resolver.caltech.edu/CaltechAUTHORS:20130312-101350418.


42. L.E.P. Dietrich, T.K. Teal, A. Price-Whelan and D.K. Newman. (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria, Science 321:1203–1206 PMCID: PMC2745639 http://resolver.caltech.edu/CaltechAUTHORS:20130312-105735972.


41. Y. Wang and D.K. Newman. (2008) Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen, Environ. Sci. Technol. 42:2380–2386 http://resolver.caltech.edu/CaltechAUTHORS:20130506-090233889.


40. A.A. Gorodetsky, L.E.P. Dietrich, P.E. Lee, B. Demple, D.K. Newman and J.K. Barton. (2008) DNA binding shifts the redox potential of the transcription factor SoxR, Proc. Natl. Acad. Sci. U.S.A. 105:3684–3689 PMCID: PMC2268809 http://resolver.caltech.edu/CaltechAUTHORS:GORpnas08.


39. D. Malasarn, J.R. Keeffe and D.K. Newman. (2008) Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3, J. Bacteriol. 190:135–142 PMCID: PMC2223751 http://resolver.caltech.edu/CaltechAUTHORS:MALjbact08.


38. N.C. Caiazza, D.P. Lies and D.K. Newman. (2007) Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003, Appl. Environ. Microbiol. 73:6150–6158 PMCID: PMC2074999 http://resolver.caltech.edu/CaltechAUTHORS:CAIaem07.


37. S.E. Rashby, A.L. Sessions, R.E. Summons and D.K. Newman. (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph, Proc. Natl. Acad. Sci. U.S.A. 104:15099–15104 PMCID: PMC1986619 http://resolver.caltech.edu/CaltechAUTHORS:RASpnas07.


36. A. Price-Whelan, L.E.P. Dietrich and D.K. Newman. (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14, J. Bacteriol. 189:6372–6381 PMCID: PMC1951912 http://resolver.caltech.edu/CaltechAUTHORS:PRIjbact07.


35. T. Bosak, S.E. Greene and D.K. Newman. (2007) A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites, Geobiology 5:119–126 PMCID: PMC2947360 http://resolver.caltech.edu/CaltechAUTHORS:20130417-155449511.


34. Y. Jiao and D.K. Newman. (2007) The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1, J. Bacteriol. 189:1765–1773 http://resolver.caltech.edu/CaltechAUTHORS:JIAjbact07.


33. L.R. Croal, Y. Jiao and D.K. Newman. (2007) The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003, J. Bacteriol. 189:1774–1782 http://resolver.caltech.edu/CaltechAUTHORS:CROjbact07.


32. T.K. Teal, D.P. Lies, B.J. Wold and D.K. Newman. (2006) Spatiometabolic stratification of Shewanella oneidensis biofilms, Appl. Environ. Microbiol. 72:7324–7330 PMCID: PMC1636161 http://resolver.caltech.edu/CaltechAUTHORS:TEAaem06.


31. K.M. Campbell, D. Malasarn, C.W. Saltikov, D.K. Newman and J.G. Hering. (2006) Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide, Environ. Sci. Technol. 40:5950–5955 http://resolver.caltech.edu/CaltechAUTHORS:20130611-153514379.


30. L.E.P. Dietrich, A. Price-Whelan, A. Petersen, M. Whiteley and D.K. Newman. (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa, Mol. Microbiol. 61:1308–1321 PMID: 16879411 http://resolver.caltech.edu/CaltechAUTHORS:DIEmm06.


29. J.A. Gralnick, H. Vali, D.P. Lies and D.K. Newman. (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1, Proc. Natl. Acad. Sci. U.S.A. 103:4669–4674 PMCID: PMC1450229 http://resolver.caltech.edu/CaltechAUTHORS:GRApnas06b.


28. A. Komeili, Z. Li, D.K. Newman and G.J. Jensen. (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK, Science 311:242–245 PMID: 16373532 http://resolver.caltech.edu/CaltechAUTHORS:20110803-122522248.


27. T.M. Salmassi, J.J. Walker, D.K. Newman, J.R. Leadbetter, N.R. Pace and J.G. Hering. (2006) Community and cultivation analysis of arsenite oxidizing biofilms at Hot Creek, Environ. Microbiol. 8:50–59 PMID: 16343321 http://resolver.caltech.edu/CaltechAUTHORS:20130415-132151408.


26. A.K. Lee, M.G. Buehler and D.K. Newman. (2006) Influence of a dual-species biofilm on the corrosion of mild steel, Corros. Sci. 48:165–178 http://resolver.caltech.edu/CaltechAUTHORS:20130402-132103393.


25. C.W. Saltikov, R.A. Wildman and D.K. Newman. (2005) Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3, J. Bacteriol. 187:7390–7396 PMCID: PMC1272973 http://resolver.caltech.edu/CaltechAUTHORS:SALjbact05.


24. A. Kappler, C. Pasquero, K.O. Konhauser and D.K. Newman. (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology 33:865–868 http://resolver.caltech.edu/CaltechAUTHORS:20130327-084430297.


23. A. Kappler, B. Schink and D.K. Newman. (2005) Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1, Geobiology 3:235–245 http://resolver.caltech.edu/CaltechAUTHORS:20130508-105548584.


22. D.P. Lies, M.E. Hernandez, A. Kappler, R.E. Mielke, J.A. Gralnick and D.K. Newman. (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms, Appl. Environ. Microbiol. 71:4414–4426 PMCID: PMC1183279 http://resolver.caltech.edu/CaltechAUTHORS:LIEaem05.


21. Y. Jiao, A. Kappler, L.R. Croal and D.K. Newman. (2005) Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris Strain TIE-1, Appl. Environ. Microbiol. 71:4487–4496 http://resolver.caltech.edu/CaltechAUTHORS:JIAaem05.


20. K.O. Konhauser, D.K. Newman and A. Kappler. (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations, Geobiology 3:167–177 http://resolver.caltech.edu/CaltechAUTHORS:20130313-153823716.


19. J.A. Gralnick, C.T. Brown and D.K. Newman. (2005) Anaerobic regulation by an atypical Arc system in Shewanella oneidensis, Mol. Microbiol. 56:1347–1357 PMID: 15882425 http://resolver.caltech.edu/CaltechAUTHORS:20110816-135040019.


18. T. Bosak and D.K. Newman. (2005) Microbial kinetic controls on calcite morphology in supersaturated solutions, J. Sediment. Res. 75:190–199 http://resolver.caltech.edu/CaltechAUTHORS:20130327-092401068.


17. D. Malasarn, C.W. Saltikov, K.M. Campbell, J.M. Santini, J.G. Hering and D.K. Newman. (2004) arrA is a reliable marker for As(V) respiration, Science 306:455–455 PMID: 15486292 http://resolver.caltech.edu/CaltechAUTHORS:20130313-141728101.


16. T. Bosak, V. Souza-Egipsy, F.A. Corsetti and D.K. Newman. (2004) Micrometer-scale porosity as a biosignature in carbonate crusts, Geology 32:781–784 http://resolver.caltech.edu/CaltechAUTHORS:20130313-094545347.


15. T. Bosak, V. Souza-Egipsy and D.K. Newman. (2004) A laboratory model of abiotic peloid formation, Geobiology 2:189–198 http://resolver.caltech.edu/CaltechAUTHORS:20130424-104406541.


14. A. Komeili, H. Vali, T.J. Beveridge and D.K. Newman. (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation, Proc. Natl. Acad. Sci. U.S.A. 101:3839–3844 PMCID: PMC374331 http://resolver.caltech.edu/CaltechAUTHORS:KOMpnas04.


13. A. Kappler and D.K. Newman. (2004) Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria, Geochimica et Cosmochimica Acta 68:1217–1226 http://resolver.caltech.edu/CaltechAUTHORS:20130313-135113949.


12. L.R. Croal, C.M. Johnson, B.L. Beard and D.K. Newman. (2004) Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria, Geochim. Cosmochim. Acta 68:1227–1242 http://resolver.caltech.edu/CaltechAUTHORS:20130416-134701459.


11. M.E. Hernandez, A. Kappler and D.K. Newman. (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol. 70:921–928 PMCID: PMC348881 http://resolver.caltech.edu/CaltechAUTHORS:HERaem04.


10. C.W. Saltikov and D.K. Newman. (2003) Genetic identification of a respiratory arsenate reductase, Proc. Natl. Acad. Sci. U.S.A. 100:10983–10988 PMCID: PMC196913 http://resolver.caltech.edu/CaltechAUTHORS:SALpnas03.


9. M.G. Buehler, G.M. Kuhlman, N.V. Myung, D. Keymeulen, S.P. Kounaves, D. Newman and D. Lies. (2003) Planar array REDOX cells and pH sensors for ISS water quality and microbe detection, 2003 International Conference On Environmental Systems, SAE, Doc. No. 2003-01-2553, pp. 1–8 http://resolver.caltech.edu/CaltechAUTHORS:20130326-102905673.


8. T. Bosak and D.K. Newman. (2003) Microbial nucleation of calcium carbonate in the Precambrian, Geology 31:577–580 http://resolver.caltech.edu/CaltechAUTHORS:20130313-083421706.


7. C.W. Saltikov, A. Cifuentes, K. Venkateswaran and D.K. Newman. (2003) The ars detoxification aystem is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3, Appl. Environ. Microbiol. 69:2800–2809 PMCID: PMC154534 http://resolver.caltech.edu/CaltechAUTHORS:SALaem03.


6. J.B.H. Shyu, D.P. Lies and D.K. Newman. (2002) Protective role of tolC in efflux of the electron shuttle anthraquinone-2,6-disulfonate, J. Bacteriol. 184:1806–1810 PMCID: PMC134904 http://resolver.caltech.edu/CaltechAUTHORS:20111103-083806661.


5. M. Dubiel, C.H. Hsu, C.C. Chien, F. Mansfeld and D.K. Newman. (2002) Microbial iron respiration can protect steel from corrosion, Appl. Environ. Microbiol. 68:1440–1445 PMCID: PMC123774 http://resolver.caltech.edu/CaltechAUTHORS:DUBaem02.


4. T.M. Salmassi, K. Venkateswaren, M. Satomi, K.H. Nealson, D.K. Newman and J.G. Hering. (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California, Geomicrobiol. J. 19:53–66 http://resolver.caltech.edu/CaltechAUTHORS:20131127-130752075.


3. D.K. Newman and R. Kolter. (2000) A role for excreted quinones in extracellular electron transfer, Nature 405:94–97 PMID: 10811225 http://resolver.caltech.edu/CaltechAUTHORS:20130313-111011301.


2. D.K. Newman, E.K. Kennedy, J.D. Coates, D. Ahmann, D.J. Ellis, D.R. Lovley and F.M.M. Morel. (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov, Arch. Microbiol. 168:380–388 PMID: 9325426 http://resolver.caltech.edu/CaltechAUTHORS:20130410-082430372.


1. D.K. Newman, T.J. Beveridge and F.M.M. Morel. (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum, Appl. Environ. Microbiol. 63:2022–2028 PMCID: PMC1389166 http://resolver.caltech.edu/CaltechAUTHORS:NEWaem97.